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The dynamics of a deformable body in an unbounded volume of an ideal fluid, which performs irrotational motion and is at rest 
at infinity, is investigated. It is assumed that a change in the geometry of the masses and shape of the body occurs due to the 
action of internal forces and that the displacements of the particles of the body are known functions of time in a certain moving 
frame of reference. The equations of motion of the moving trihedron are represented in the form of Kirchhoff's equations. The 
conservation laws when there are no external forces are indicated. Using these laws, the equations of motion are reduced to a 
non-autonomic system of first-order differential equations in the group of displacements of the configurational space. In the 
case of plane-parallel motion of the body, these equations are explicitly integrated in quadratures. A special case, when the 
boundary of the body does not change, is considered. It is established that, in the case of non-equal added masses, due to the 
change in the geometry of the body masses, the body can move from any position into any other position. © 2001 Elsevier Science 
Ltd. All rights reserved. 

1. G E N E R A L I Z E D  LIOUVILLE EQUATIONS 

In 1858, Liouville [1] considered the general problem of the rotation of a deformable body around a 
moving point, where the geometry of the masses of the body only changes under the action of internal 
forces. He obtained the generalized dynamic Euler equations relative to moving axes which, at each 
instant of time, coincide with the principal axes of inertia of the body. Various aspects of Liouville's 
equations are discussed in Routh's book [2]. The Liouville problem can be extended by considering 
the three-dimensional motions of a variable body. It is found that the generalized Liouville equations 
admit of a unique representation in the form of Kirchhoff's equations, which is convenient from the 
point of view of the more general problem of the motion of a variable body in a fluid. 

Thus, we refer the motion of a system of point masses with masses rnk to two Cartesian frames of 
reference: a fixed (inertial) frame Oxyz and a moving reference frame Ol~rl~ (Fig. 1). We emphasize 
that (unlike the well-known approach in [1]) it is optional whether the point Oa coincides with the centre 
of mass of the system of points and, in the general case, the ~, q and ~ axes are not the axes of inertia 
of the system. Suppose r k is the radius vector of the k-th point with respect to the fixed reference frame 
Fk and q~k are external and internal forces acting on the k-th point respectively and r0 is the radius vector 
of the point O1 with respect to point O. We put rk = ro + Pk. 

We recall that any vector function of time f(t) can also be considered in the moving reference frame. 
We shall denote its derivative with respect to the moving frame (the relative velocity) by a dot. The 
absolute and relative velocities are related by Euler's formula 

d f / d t  = )~ +[03, f]  

where 03 is the angular velocity of the moving reference frame. 
The kinetic energy of the system of points is as follows: 

(ark ar~) ark 
T =  ~,  mk~--~t t , d t  ' "-dT"t = v  +lS+[°~'Pk] (1.1) 

where t) = drddt is the velocity of the origin of the moving reference flame. It is henceforth assumed 
that the change in the geometry of the masses of the system of points under the action of internal forces 
is known. In other words, it is assumed that 9k are known functions of time. Note that other formulations 
of the problem are also possible. For example, Zeiliger and Chetayev (see [3]) studied the rotation of 
a body around a fixed point taking account of its radiative expansion. 
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Fig. 1 

It follows from relations (1.1) that 

~T - - = m y  + Z  mk[Sk+Z m/[~,p/],  m=Y.m k 
by 

which is the momentum P of the variable body. By the theorem and the change in momentum, 
dP/dt = F = Z Fk. In the moving reference frame, this equation takes the form 

We now make use of a theorem on the change in the angular momentum about the point O 

dt mk rk' dt J ~ [rk' F~ + ~ ]  (1.3) 

Taking account of the notation adopted, the angular momentum of the body is equal to 

OT 
~m + jr°' P] (1.4) 

where 

~T 
: 2 rnk[Pk, [co, pk] ]+£  mk[pk, 15k]+ [2  mkPk, v] (1.5) 

The first and second terms in this formula have the meaning of the angular momentum of the system 
about the point O1 for the reference-frame and relative motions of the body respectively. The third 
term vanishes if the point O1 coincides with the centre of mass of the variable body. 

Since the moment of the internal forces is equal to zero, from relations (1.3) and (1.4) we have the 
equation 

d ~ T + I  u OT] 
d-; ' - g o  = 2  rk , J - I ro , F]  

In the moving axes, it takes the following form 

(1.6) 

where M is the moment of the external forces with respect to the moving frame of reference. Equations 
(1.2) and (1.6) are identical in form to the well-known Kirchhoff equations [4] which describe the motion 
of a rigid body in an ideal fluid. 
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As an example, consider a special case when Oi is the centre of mass of the body. Then, 
Y~ mkP k = 0 and, hence, P = my, and the quantity (1.5) will be the angular momentum of the body about 
the centre of mass lo~ + ~, where 

Ito= Y. mk[Pk,io~,pk]], k=Y~mk[pk,15k] 

The symmetric linear operator  I is the inertia operator. It is clear that I and )~ in general depend on 
time. In this case, Eq. (1.6) becomes Liouville's equation [1] 

(16o+ k)  +[o3, lo)+3.]= M 

2. T H E  E Q U A T I O N S  OF M O T I O N  OF 
A V A R I A B L E  BODY IN A F L U I D  

We will now assume that the variable body moves in an unbounded volume of an ideal incompressible 
fluid which undergoes potential flow and is at rest at infinity. To obtain the equations of motion in this 
case, it is necessary to write the right-hand sides of Eqs (1.2) and (1.6) in explicit form. Suppose S is 
the boundary of the deformable body. We shall assume that, under the sole action of internal forces, 
the body is deformed in accordance with a law which is known in advance. Again, we associate the moving 
Cartesian reference frame Ol{'q~ with the body. 

Note that the velocity of any point of the body surface S is equal to the sum of the reference-frame 
and relative velocities. The reference-frame velocity is given by Euler's formula v + [6o, 9], where p is 
the radius vector of this point with respect to Oa. The relative velocity is determined by the pure 
deformation of the body in the moving reference frame. Following [5], we represent the potential of 
the flow in the form of the sum. 

3 3 

q~= ~vi(0i + Y. 6oi(0/+3 + %  (2.1) 
i=1 i=l 

where va, 02, 03 (601, co2, (o3) are the components of the velocity vector of the centre of mass (of the 
angular velocity) in the moving reference frame. The potentials (0a .... (06 and (0. are harmonic functions 
outside the body, which are determined by the impermeability condition: at each point of the boundary 
of the body O(0/On (where the outward n is normal to the boundary S) is equal to the normal component 
of the velocity of this point. The above-mentioned potentials are therefore found as the solutions 
of the corresponding external Neumann problem. In particular, (01, (02, (03 are the potentials 
corresponding to the reference-frame motion of the body with unit velocity along the ~, rl, ~ axes and 
(P4, (05, % are the poSentials corresponding to the rotation of the body at unit angular velocity around 
these axes. It the boundary of the body S deforms, then (unlike the classical case) the potentials % ..... 
(06 depend on time. The function (0. is a potential which describes the fluid flow caused by pure 
deformation of the body. 

As is well known (see [6], for example) the kinetic energy of a fluid is found from the formula 

TL =--SS p &p s 2 " ~ n n  do (2.2) 

where p is the fluid density, n = (nl, n2, n3) is the outward normal to S and do  is an element of area 
of the surface S. It is clear that T c = T 2 + T1 + To, where T~ is a homogeneous form of degree s in vi, 
to i. If the boundary of the body is undeformed, then Ta = To = 0 and the coefficients of the quadratic 
form T 2 (the added masses) are constant. In the general case, the coefficients of the homogeneous forms 
T~ are time dependent.  

It is well-known [6] that the force R and the moment L about the point O1, acting from the fluid onto 
the body, have the form 

Here r is the radius vector of a point of the surface S with respect to the point O1. Below we will show 
that the force R and the moment L can be represented in the following form 
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d bT L d bT L Iv bTL] (2.4) 
R =  dt bv ' L =  dt bco " ' bv J 

This result is well known in the case when there is no pure deformation (see [6], for example). In 
this case, it is obvious that T = T2. 

Substituting formulae (2.4) into Eqs (1.2) and (1.6), we obtain the equation of motion of a variable 
body in a fluid in the form of Kirchhoff's equations (1.2) and (1.6), where T has the meaning of the 
total kinetic energy of the "body plus fluid" system. 

As an example, we will now prove the first equality of (2.4). To do this, it is sufficient to verify that the vector 
equality 

~T 
=-S~ pcpnda (2.5) 

holds. 
We will prove that the first components of the vectors (2.5) are equal. Clearly, 

< g T L - - P  [ ~'~'~ + + ~'~I ]dcl (2.6) 
i)v n 2 [': cpl on on J 

Suppose Z is a sphere of sufficiently large radius with centre at the point Ol, We apply Gauss' formula to the 
domain V contained between the surfaces S and Z 

,I+,+-,+,+l,,°-,,(+, 0+ ,̀ ,,,+)+:++,+,,,+-,+,,,,,,,,++ 
~ on on ) s -~n- (2.7) 

The right-hand side of this equality is equal to zero since q~ and qh are harmonic functions. Suppose a is the 
radius of the sphere Z. Then, the integrand in the first integral on the left-hand side of equality (2.7) decreases 
a s  O(a -3) as a --~ ~ (see [5], for example). Hence, the integral over the sphere vanishes when a -+ ~. The 
equality 

# ,,,,, = # ,,,, ,+',:, 
S ~n S o n  

therefore follows from (2.7). 
Taking this equality into account, and also by virtue of the fact that ~cpl/~n = nl at the points of the surface S, 

we write equality (2.6) in the form 

~TL = - P l l  cPnld~ 
~Vl S 

Hence, the equality of the first components of the vectors (2.5) has been proved. 

3. C O N S E R V A T I O N  LAWS 

We will now consider the important special case when there are no external forces acting on a variable 
body in a fluid: The principal vector of the forces F and principal moment M in Eqs (1.2) and (1.6) are 
then equal to zero. In this case, we have the two vector integrals, the conservation laws 

~T K =  + r, (3.1) 
P =  o~ v ' 

Here,  r is the radius vector of the point 01 with respect to the origin of the fixed reference flame O. 
Let  us show that P and K, as vectors in a fixed space, remain unchanged. 

.K  . + [ "r OT ] 0 
d--;- - dt ~¢o [ dt "~o-u J = 
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Actually, Eq. (1.6) has the form dr/dt = o. The vector P is the total momentum of the "body plus 
fluid" system and K is the angular momentum of this system about the point O. 

It is worth emphasizing that P and K are not only integrals of the dynamic equations (1.2) and (1.6). 
In order to represent them in explicit form in a moving reference frame, it is necessary to use the matrix 
of transformation to the moving reference frame. As a result, we obtain six scalar first integrals in t~ i 
and 0~i. On equating these integrals to arbitrary constants, we obtain six independent equations from 
which it is possible to find o and co as functions of the position of the moving reference frame. This 
method, which has been used previously in the conventional Liouville problem [7], enables one to halve 
the order of the equations of motion of a variable body when there are no external forces. We will now 
show how this can be done in the important practical special case when the vectors P and K are equal 
to zero (it can be assumed that the variable body began to move from a state of rest). It has already 
been mentioned above that the kinetic energy of the "body plus fluid" system has the form 

T = (Av, v)/2 + (By, o3) + (Co3, to)/2 + (~,, v) + (la, to) +× (3.2) 

The matrices A, B and C (A and C are symmetric), the vectors ~ and g and the scalar × are known 
functions of time. The homogeneous quadratic form of the kinetic energy with respect to co and o is 
positive definite for all values of t. In particular, the symmetric matrices A and C are positive definite 
and, consequently, non-degenerate. Since P = 0 and K = 0, we have 

Av+Bro3+~,=O, B v + C o 3 + g = O  

Hence, 

(A - BrC-IB)v = BrC- lg  ( C -  BA-IBr)o3 = BA-I~, (3.3) 

Since the quadratic form T2 is positive definite, the symmetric matrices 

A -  Br C-I B, C -  BA-I B r 

are positive (see [8]). Consequently, the vectors co and v from (3.3) (the angular velocity and the velocity 
of the centre of mass of the body in the moving reference frame) are found in explicit form as functions 
of time. 

In order to find the motion of the moving reference frame, we introduce the fixed unit vectors 
a, 13, y directed along the x, y and z axes. Their components in the moving reference frame form an 
orthogonal transformation matrix. As functions of time, these vectors satisfy Poisson's equations 

& +[o3, a l  = 13 +[o3,131 = 5' +[o3, "tl = 0 (3.4) 

with the already known angular velocity 0)(t). The solutions of the linear system a(t), 13(t), ~,(t) with certain 
initial data uniquely define the orientation of the moving reference frame at the actual instant of time. 
Finally, the motion of the centre of mass of the body is found by simple integration of the following 
equations 

2 = (u, cx), ~ = (v, 13), ~ = (v, Y) (3.5) 

with known right-hand sides as functions of time. 
These remarks are of direct relevance to a problem of the motion of fish: how can a body move in 

a fluid by means of changing its shape due to the action of internal forces? A model problem of this 
kind on motion in a solid channel has been considered previously [9] (also, see [10]). It has been shown 
in [11] that it is possible to generate a tractive force during the motion of a variable body in an ideal 
vortex-free fluid. The approach is based on the use of the well-known formulae (2.3), but the explicit 
form of the equations of motion of the body is not given. Relations (3.2)-(3.5) give an algorithm for 
solving the problem in the most general case. Furthermore, as will be shown in Section 5, a tractive 
force can be generated without changing the body shape purely by controlling the geometry of its masses. 

4. THE P L A N E - P A R A L L E L  M O T I O N  OF A V A R I A B L E  BODY 

The formulae of Section 3 are greatly simplified in the case of a plane-parallel motion of a body when there 
are no external forces. Suppose a body moves in such a way that its shape and the distribution of the masses 
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at each instant of time are symmetrical about a certain moving plane H,x andy are the Cartesian coordinates 
of the point O1, that is, the origin of the moving reference frame in the plane FI, and cz is the angle of rotation 
of the moving axes. It is will known that, at each instant of time, the moving reference frame can be chosen 
in such a way that the kinetic energy (3.2) of the "body plus fluid" system has the form 

T = ( a t u  2 +a2 v 2  + b m 2 ) / 2 + ~ j v )  + ~,2v2 +l.t~ + × (4.1) 

Here,  m = ci is the angular velocity of  the moving reference frame. The coefficients in this formula are 
unknown functions of time. 

Kirchhoff 's  equations (1.2) and (1.6) take the simpler form 

a77 + av-7 (4.2) 

aT)  aT aT 
a<o) +v' a77-  5;7 , =° 

On adding the simple kinematic relations 

2 = v l c o s o t - v 2 s i n o ~ ,  5 ,=u l s ino t+v2cos~ ,  d t = m  (4.3) 

to these equations, we obtain a closed system of differential equations, which describes the motion of 
the moving reference frame. 

The first integrals (3.1) of system (4.2), (4.3) have the form 

0T aT 0T . 0T 
P' a~,, c°s~-5-~2 sina' e2 = a~,, s'no~+5-ffTc°s'~ 

(4.4) 
0T 

K = x P  2 - yP] -t Om 

Hence, taking (4.1) into account, 

vl = (q  cos (x + c2 sin oO/al - 7Ll/al 

v2 = (-cl sin Ct + c 2 cos O0/a2 - ~1/a2 

(D ---- (C 3 - - X C  2 + yc  1 ) / b -  t.fib 

where Cl, Ce, c3 are the constant values of P], P2, K. On substituting these formulae into the kinematic 
relations (4.3), we obtain a closed system of differential equations in the group of motions of the plane 
II. These equations look particularly simple in the case when cl = ce = c3 = 0 (for example, if the motion, 
as a result of deformation, starts from a state of rest) 

x =  L~cos(x ~2sinct ~qsino~ ~.2cosc( U 
F - - ,  .9= & = - -  (4.5) 

a l  a 2 a I a 2 b 

We will now discuss the conditions under which periodic changes in the geometry of the masses and 
the shape of the body lead to non-zero mean values of the velocities 2 and)?. For simplicity, we will use 
the notation ~ = -)~k/ak (k = 1, 2) and r I = -g /b .  From (4.5), we obtain the equation for the change 
in the complex variable z = x + iy. 

= ~ eia, { = {i + i{2 (4.6) 

We assume that ~(t) and rl(t) are periodic with respect to t with a period 2rt/o). Since cZ =rl, 

offt) = ~ t  + q)(t) (4.7) 

where ~ is the mean value of the function rl(t) and ~(t)  is 2rt/o)-periodic in t. 
We will now show that, if f2 ¢ no) and n is an integer, the mean values o f~  and); are zero. In this 

case, the body will move in a bounded domain. Actually, the equality 2 = Z ( t )  exp ida, in which Z is 



The motion of a variable body in an ideal fluid 585 

periodic in t with a period 2rdo), follows from (4.6) and (4.7). On expanding this function in a Fourier 
series and integrating with respect to t, we obtain the coordinates of the body 

Z(t )= ~L Z. ei(nt~+n), + cons t (4.8) 
, = ~  i(no3 + ~)  

where Z,  are the Fourier coefficients of the function Z(t). If ~ ~ no), series (4.8) converges and represents 
a bounded function of t. 

The equality if2 = 0 is the simplest resonance relation between the frequencies £2 and o), at which a 
tractive force can be created: if Z0 ~ 0 (a typical situation), then the mean value ofk is non-zero. This 
situation is of particular interest from the point of view of the problem of the motion of fish. A similar 
result has previously been obtained by another route in [11] for a model example of the motion of an 
unbounded body of periodic shape. 

5. THE M O T I O N  OF A BODY W I T H  R I G I D  B O U N D A R Y  

We will consider the special case of the plane-parallel motion of a body, the shape of the boundary S 
of which does not change in the moving reference frame. We shall show that, in the case of unequal 
added masses, a tractive force can be generated by displacements of the points within S under the action 
of internal forces. Furthermore, with suitable control of the geometry of the masses within S, a body 
can be displaced from any position to any other position. This effect already manifests itself in the 
simplest case when just a single point mass is displaced within the material shell. 

Thus, we associate a moving system of coordinates O~{rl with a rigid body such that the kinetic energy 
of the "body plus fluid" system has the form 

T" = (a~  2 +a2v22 +bt01)/2 

Since the boundary S is not deformed, the coefficients of this form are constant. The motion of a point 
of mass m is given by certain known functions {(t) and rl(t). The projections of the absolute velocity of 
this point onto the moving ~ and rl axes have the form 

. ,  = v ,  + ~ - ~ ,  .2 = o 2 + f i + o ~  

The total kinetic energy of the variable body is equal to 

(5.1) 

T= T" +m(u2 +u2)12 (5.2) 

and Kirchhoff's equations have the form (4.2). 
We will assume that the body began its motion from a state of rest. Integrals (4.4) then take the form 

OT 0T cOT 
~ - - ~ 0  

- 3v 2 3o) 

Using expression (5.2) and formulae (5.1), we obtain 

v, =-×,(~-o)n), v2 =-×2(fl+o~) 

o) = ×3[(1 - ×, )n~ - (1 - ~2)~fl] (5.3) 
I+X 3[(I-x l)q2 4_(l_x 2)~2] 

m m m 
~ 1  - , 7~2 - - - ,  ~ 3  

m + a I m + a 2 = "-'b 

Taking equalities (5.3) into account, the relations 

.~= x,({,n,~)%+x2(~,n,~)fl, y= v,(~,q,~)(+Y2(~,n,~) fl 

(5.4) 
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follow f rom relat ion (4.3). The  explicit fo rm of  the coefficients Xk, Yk, qbk (k = 1, 2) is easily obta ined  
using fo rmulae  (5.3). 

It  is clear  that  the posit ion of the rigid body is uniquely specified by the e l emen t  z = (x,y, ot rood 27z) 
of  the group  of  mot ions  of  the plane.  I f  { and rl are specified functions of  the t ime t, the posit ion z(t) 
of  the body is found using ordinary  quadra tures .  

It  turns out  that, i f a  1 ~ a2, then, for  any e > 0 and any two posit ions of  the b o d y z  1 and z2, piecewise- 
smoo th  "control l ing"  functions {(t), rl(t), t 1 ~< t ~< t 2 are found such that  

I % ( t ) l ~ e ,  [ r l ( t ) l ~ e ;  z ( f i )=z j ,  z ( t 2 ) = z  2 

In o the r  words,  a body with unequal  added  masses  in a fluid can be displaced f rom any posit ion to any 
o the r  posi t ion by means  of a suitable d i sp lacement  of  a point  mass  in a specified b o u n d e d  domain.  The  
t ime of the mot ion  t 2 - tj depends  very much  on E. 

Remark. The condition a 1 ~ a 2 is essential. Actually, if al = a2 = a, the two first integrals 

ax + m(x + ~ c o s  oc - q s in  ~ )  = c I 

ay+m(y+~sinot+'qcosoO=c2;  Cl, c2= const 
(5.5) 

follow from relations (4.3) and (4.5). 
The expressions in parentheses are the coordinates of the point m in the body-fixed axes. If the point 01 is 

interpreted as the centre of mass of the "body plus fluid" system, then relation (5.5) denotes the immobility of the 
centre of mass of the total "body plus fluid plus point mass" system. In particular, it follows from relations (5.5) 
that the rigid body remains in a bounded domain for the whole of the time (it has to be taken into account that, 
since the point rn remains within the shell of the rigid body, the coordinates ~ and rl are bounded). 

In o rder  to prove  the assert ion fo rmula t ed  above,  we int roduce an extended f ive-dimensional  space 
M with coord ina tes  x, y, c~ m o d  2rt, ~, rl and a distr ibution of two-dimens ional  p lanes  defined by the 
independen t  equat ions  

dx : X,d% + X2dq, dy = Yid% + Y2drl (5.6) 

dot = ~ t d ~  + ~2drl 

We also in t roduce the two possible independen t  vec tor  fields V 1 and V 2 with components)(1,111, ~1, 1, 
0 and X2, Y2, ~2, 0, 1 respectively. It  is obvious that  these vectors  satisfy Eqs  (5.6). Following the well- 
known approach  [12], we consider  the five vector  fields 

V,, V2, IV,, V21, IV,,[V~, V2J], W2,[Vl,V2J] (5.7) 

where  [, ] is a Jacdbi  bracket .  I f aa  ~ a2, it is found that,  for  small values of  ~ and r 1, these vectors  are 
linearly i ndependen t  at each point.  

-q 

T 

Fig. 2 
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Actually, the condit ion of  linear independence is equivalent  to the fact that the determinant  of the 5 x 5 matrix, 
consisting of  the components  of the vectors (5.7), is non-zero. The  value of  this determinant  when ~ -- q = 0 is 
equal to 

-(2×1 +}{2 -3)(2×2 +×1 -3)(×1 +}{2 - 2)(xl - x2)2x~ 

It is interesting to note that this expression is independent of the angle of rotation cx. It is easy to verify that the 
first three factors are positive. Consequently,  if ×1 ~ ×2 (or, what is the same thing, al ~ a2), the vectors (5.7) are 
linearly independent for small values of ~ and rl. 

This fact enables us to use the theorem of Rashevskii [12], according to which any two points of a 
domain in M, specified by the inequality ] ~,(t) ] <~ e, ]rl(t) ] ~ E (e is small), can be joined by a piecewise- 
smooth curve consisting of segments of the integral curves of the fields V 1 and V 2. It remains to point 
out that the motion along the phase trajectories of the field V 1 and ~ ,  parametrized by the time t, satisfies 
relations (5 .4) .  

Note that the coordinate ~,(rl) is an integral of the vector field V2(Va). Hence, a prespecified motion 
of a rigid body can be performed by moving the point mass m in the manner qualitatively shown in 
Fig. 2. 
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